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In the present study, it is considered that a A

3
B

5 
type spherical semiconductor quantum dot surrounded by a very thin 

insulating spherical layer is placed in an another A
3
B

5 
type semiconductor region. It is assumed that the  -type potential 

barrier for the very thin insulating spherical layer has a radius of a . By using Kane Hamiltonian, it is investigated the 

scattering resonances of electrons which are scattered from the boundary of the semiconductor dot. By using the continuity 
conditions for the wave functions and flux discontinuous at the boundary of the semiconductor quantum dot, we have 
analytically calculated the phase shift and the partial cross section for the scattering of electrons. It has been shown that the 
quasi-bound states appear as peaks in the cross section. 
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1. Introduction 
 

In recent years, there have been intensive studies in 

connection with features of quantum nanostructures such 

as quantum wells, wires and dots [1]. Electrons traversing 

through ultra-small semiconductor microstructures give 

rise to a fascinating regime of quantum transport [2].  

When the system size is reduced to near or below the 

mean free path of charge carriers, a variety of phenomena 

associated with quantum interference can be easily 

observed. These include the study of the universal 

conductance fluctuations in the mesoscopic regime [3], the 

Aharonov-Bohm effects [4], the quenching of the quantum 

Hall effects [5], and the junction resonances [6]. 

Interference of the ballistic charge carriers in one-

dimensional (1D) rings formed by two quantum wires in 

the self-ordered silicon quantum wells was investigated 

[7].  

Recent progress on the synthetic chemistry of 

semiconductor nanocrystals has made it possible to access 

high quality semiconductor nanocrystals with controlled 

size, shape and optical properties. Current technologies 

can be used to fabricate quantum dots of various types, 

including both core–shell ones [8] and those embedded in 

a matrix made of a different semiconductor material. It has 

been shown experimentally that core–shell quantum dots 

can be effectively used in biology and medicine [9–11]. 

Core–shell quantum dots are primarily used for in vivo 

imaging and identifying living cells. Core–shell quantum 

dots have a nanometer sized semiconductor core coated 

with a thin layer of a shell material. The carrier spectrum 

in such a dot strongly depends on the core radius and the 

thickness of the coating shell. The scattering of two 

dimensional massless Dirac electrons was investigated in 

presence of a random array of circular mass barriers. The 

differential and total cross section, the inverse momentum 

relaxation time and the perpendicular component of 

resistivity were also calculated [12]. 

By using the one-band effective mass approximation 

model, the optical properties of the spherical shaped 

CdSe/ZnS and CdSe/ZnSe core–shell quantum dots were 

computed. A theoretical analysis of the radiative 

recombination lifetime of core-shell quantum dots has 

been presented and discussed [13]. The interband optical 

absorption and Stark shift in the ensemble of InSb 

spherical quantum layers were investigated. Calculations 

were carried out for both, the cases of parabolic and 

Kane’s dispersion laws [14]. Barrier penetration through a 

square potential barrier and a step potential barrier was 

studied in the framework of the eight-band Kane 

Hamiltonians [15]. It is well known that during the 

scattering on a spherical cavity of radius R, the resonant 

states occur for the electrons with narrow energy bands 

around the zeros of the denominator of phase shift [16]. 

The exact solution of the Schrödinger equation was made 

for 1D well formed by a repulsive delta barrier in front of 

an impenetrable well, and the relation between scattering 

resonances and exponential decay from the well was also 

obtained [17]. An attractive delta potential has been used 

as a barrier to study resonance phenomena in scattering 

theory [18].  Hernandes et al. [19] investigated a one 

channel model with a double pole δ-barrier potential and 

showed that a double pole of the S-matrix can be induced 

by tuning the parameters of the model. 

The energy spectrum is parabolic only in the A
3
B

5
 

type semiconductors near the bottom of their conduction 

band. In the majority of other substances, non-parabolicity 

of the energy spectrum plays an important role. The 



482                                                                                   A. M. Babanli, E. Artunç 

 
experimental advantages of using narrow-gap 

semiconductors for the reduced dimensionality make it 

necessary to take into account the real band structure of 

materials. While considering the non-parabolicity of the 

electron dispersion in narrow and medium gap 

semiconductors the coupling of conduction and valance 

bands should be taken into account. This is the purpose of 

our work.  

In this paper, the electron scattering problem was 

investigated for a  -type potential barrier in A
3
B

5 
type 

semiconductors using three-band Kane model, and 

calculated the cross section to demonstrate how possible 

the quasi-bound states reveal themselves in the scattering 

cross section. By using the method in refs. [16]-[18], 

positions of resonant states were obtained and energies of 

quasi-bound states were calculated for the 

InAs/Insulator/InSb nanosystem. 

 

 

2. Theory 
 

The model which is considered in the present study 

consist of an open spherical quantum dot which is a 

semiconductor sphere (i.e., InAs type semiconductor as 

labelled B) and has a radius a . It is surrounded by a very 

thin insulating spherical layer and placed in an another 

semiconductor region (i.e., InSb type semiconductor as 

labelled A).  

In the first step, it is assumed that an electron with an 

energy E travels from outer of the quantum dot through the 

inner part of the quantum dot. We treat the thin insulating 

spherical layer as a  -type potential at r a , 

( ) ( )U r U a r a  , where ( )r a   is the Dirac 

delta function . 

The theory of quantum structures has been built 

within the single-band effective mass approximation. 

However, this is invalid for narrow-gap semiconductors, 

where the electron effective mass is small. We use the 

Kane zone structure model (which takes into account the 

interaction of the conduction band and three hole bands) in 

the spherical approximation. For the 3-D electron, the 

Kane Hamiltonian [20] in spherical coordinates is 

 

   

2

3 ( ) ( , , ) 0
2 ( )

Ua r a r
m

   


 
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 

,   (1) 

 

where 3  is three-dimensional Laplacien and 

( )m  represents the electronic effective mass in 

nonparabolic approximation and given by 
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where P is the matrix element accounting for the 

interaction between the conduction band and the valence 

band. The matrix element P is expressed in terms of the 

effective mass at conduction band bottom and other 

parameters (
gE  is the band gap and   is the spin-orbit 

splitting energy of the valence bands) and given by 
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[21]. The Schrödinger equation may be factorized so that 

its solutions becomes  

( )
( , , ) ( , )l

lm

r
r Y

r


                     (4) 

where ( , )lmY    are spherical harmonic functions [16]. 

The radial equation found to satisfy the following 

differential equation: 
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For 0l  , at the origin fixes the interior solution to  

 

 0 sin( )Bk r   .                          (6) 

 

The solution for the outer part is  

 

   0 0sin AA k r                     (7) 

where 0  is phase shift and  

 

2

( )( )3

(3 3 2 )

ig gi i

i

gi i

E E
k

P E

  



  


  
 ,            (8) 

 

We have imposed the wave function is continuous at 

r a  and first derivative is discontinuous at r a . 

Thus, we have   

( ) ( )a aa a                              (9) 
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where indices ± indicate limit from right and left. For the 

determine the phase shift and amplitude, we use the 

boundary conditions (9)-(10), and  we get 
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where we defined dimensionless parameters: 
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2

2

2 nAm Ua
  ,  , .A A B Bz k a z k a       (14) 

  characterizes the penetrability of the barrier. The value 

  corresponds to a completely impenetrable 

barrier, while the value 0   corresponds to the case of 

complete penetration, or the absence of any scatter. 

The scattering matrix 
0S , written as a function of the 

phase shift 
0 , is  
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[18]. Resonant states are represented by the poles of 

scattering matrix: 

 01 tan ( )i   =0 .                      (16) 

With this exact expression of the phase  shift 0 ( )E   we 

can locate the position of its complex poles 

 

( / 2)r i     ,                              (17) 

 

where   is the width of the quasi-bound states. 

The analytical expression for the amplitude is 

obtained by using Eqs. (9)-(10) 
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Now we shall study the evolution of a wave coming 

out from the quantum dot, with solution given by  

 

 0 1 sin( )BA k r   .                        (19) 

 

The solution for the outer part is   

 

   0 0sin Ak r    ,                    (20) 

 

Then, when 1 1/A A , the phase shift will the same 

as before. 

For  0l  ,  the partial cross section 0  becomes 

2

0 02

4
sin

Ak


   .                          (21) 

E may be performed from the 
0 curve as a function 

of the energy of the incident particle. 

 

 

3. Results and discussion 
 

It is presented a numerical example for the 

InAs/insulator/InSb nanosystem. It is used the values of 

the effective mass of electrons 00.025Bm m  and 

00.016Am m  for InAs and InSb, respectively, where 

0m  is the mass of free electron. The values of the band 

gaps g
 

and spin-splitting  for InAs and InSb are 

selected
 

0.42gBE eV , 0.34B eV  , 

0.23gAE eV , 0.9A eV  , respectively [22]. The 

inner radius was taken as 100r A .  

In Fig. 1, the dependence of the amplitude on the 

electron energy is shown for the value of the 

dimensionless parameter, 30 . The curves for the 

amplitudes of electrons through the outer part (from the 

semiconductor B to the semiconductor A) and coming 

from the outer part (from the semiconductor A to the 

semiconductor B) are labeled as "1" and "2", respectively. 

As it is seen from Fig. 1 the amplitude of the electron 

coming from the inner part is zero for particular values of 

energy.  The amplitudes of the electrons coming from the 

outer part are maximum at those particular values of 

energy. These energy values are the energies of quasi-

bound states. The incident wave from semiconductor A 

may undergo multiple collisions before leaving the well. 

When this happens the duration time of the electron in the 

well increases and quasi bound sates occurs [23, 24]. If the 

energy of the electron coming from the outer part is close 

to the energy of quasi-bound states in the inner part the 

amplitude of the incident electron will be maximum.  

 

 

 

 

Fig. 1. The amplitude of the wave function for the 

InAs/insulator/InSb   type    nanosystem    plotted    as    a  

                functions of the energy for 30.    
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Fig. 2. The scattering cross section  0   for 30  . 

 

 

The energy of quasi-bound states with  -type 

potential barrier is found by solving Eq.(16). The account 

for quasi-bound states one normally solves the time-

dependent Schrödinger equation which is very 

complicated problem when compared to the standard 

eigenvalue problem. Here, we follow the method 

presented in detail in [18, 20] and calculate the poles 

scattering matrix. For the InAs/insulator/InSb nanosystem, 

values of energies of quasi-bounds states and with half 

width / 2  were calculated as ( , / 2 ): (0.1159, 

0.00012), (0.3403, 0.0005), (0.5918, 0.00066). The 

positions of the poles in the complex plain are functions of 

two independent parameters as the radius of quantum dot 

and the potential barrier strength U .  

If the energy of the incident electrons is close to the 

energy of quasi bound states of electrons in the inner parts, 

its wave function inside will be strongly coupled with its 

wave function outside, and the wave function in the inner 

part will have a large amplitude, resulting in resonance 

scattering (as seen in Fig. 3). 

 

 
 

Fig. 3. The scattering wave function as a function of r, 

evaluated  at   =0.1159eV.  In   the   inner  region,  the  

     amplitude of the scattering wave function increases.  

 

 

For  , the resonance levels lie close to the 

energy eigenvalues of the quantum dot [16]. They 

therefore are called quasi-bound states of the system. The 

peaks of amplitude indicate the quasi-bound states. The 

energy of the quasi-bound states is complex, where the 

negative imaginary part of the energy becomes small. The 

positions of poles depend on the potential strength . If 

  is very large but still finite, the dot is penetrable and it 

has no bound states corresponding to quasi-bound states.  

The energies and widths of quasi-bound states cannot 

be directly measured experimentally, whereas such 

characteristic as the scattering cross section  is 

measurable. Therefore, it makes sense to analyze and 

clarify the dependence of 0  on   and its features can be 

used to determine the spectral parameters of quasi-

stationary electron states with reasonable accuracy. In 

order to do this, we must study the properties of the partial 

cross section 0 . 

The numerical results for the lowest contribution (l=0) 

to the total cross section as a function of energy are shown 

in Fig. 2. The vertical arrows indicate the   values 

corresponding quasi-bound states. Narrow peaks appear 

close to the positions of the bound states of the dot that are 

defined by the equation ( ) 0Bsin z  . A series of narrow 

resonances is apparent. From the Fig. 1 and Fig. 2, it can 

be seen that the resonance energies exactly coincide, 

correspondingly, with the peak positions of the function 

A( ) on the energy scale. Off resonance, the wide bumps 

in the cross section are typical of hard sphere scattering. 

 

 

4. Conclusion 
 

By using the Kane Hamiltonian, the electron 

scattering from spherical quantum dot surrounded by the 

 -type potential barrier is studied. It was demonstrated 

that the resonance energies and resonance width of quasi-

bound states of electrons in the open quantum dot can be 

calculated by the complex poles scattering matrix. For the 

InAs/ınsulator/InSb nanosystem, the energy and the width 

of the quasi-bound states are calculated by using the 

scattering matrix. 
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